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Abstract
We investigate the transient and the long-time behaviour of asymmetric
anomalous walks in heterogeneous media. Two types of disorder are worked out
explicitly: weak and strong disorder; in addition, the occurrence of disordered
multiple paths is considered. We calculate the first passage time distribution of
the associated stochastic transport process. We discuss the occurrence of the
crossover from a power law to an exponential decay for the long-time behaviour
of the distribution of the first passage times of disordered biased walks.

PACS numbers: 47.55.Mh, 66.30.Lw, 05.60.+w, 47.90.+a

1. Introduction

The study of asymmetric random walks has been an important issue in understanding problems
of hydrodynamics dispersion [1] in many areas of science such as the physics of fluids [2].
The concept of asymmetric walks [3, 4] applies also to geophysics [5–7], polymer physics
[8, 9], ageing and glasses [1, 10, 11], etc.

It is known that the presence of bias drastically changes the properties of the random
walks in random media [1]. In particular, depending on the type of the disorder [12] the bias
breaks down possible perturbation theories to tackle random media problems [13]. A related
complex problem is the analysis of the first passage time distribution (FPTD) in the presence
of disorder [14] and bias. The presence of bias and disorder compete with each other leading
to unexpected results [15]; the physical reason for this fact is the effect of the drift (bias)
against the disorder (localization) [1, 8, 10, 16].

If the disorder strength is not so high there is not localization and therefore the disorder
only introduces a renormalization in the kinetic coefficients. Thus we expect that the FPTD
will not change drastically, so at long time, due to the drift, the decay of the FPTD will
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be controlled by an exponential decay factor e−Ct , where the constant C is related to the
bias. If the walks were symmetric, the long-time behaviour of the FPTD would just be
given by the power law ∝ t−3/2. Therefore in non-symmetric weak-disordered walks if we
consider a suitable time-scale we should see the crossover between the behaviours t−3/2 to
e−Ct . Thus, the interesting point is to analyse the whole temporal behaviour of the FPTD
in the presence of bias and disorder. Another important issue to understand is the transient
anomalous hydrodynamics dispersion in heterogeneous systems, i.e., the finite-size effects in
the presence of weak disorder. One of the goals of the present paper is to find the associated
critical length in terms of the parameters that characterize the drift and the weak disorder [17].

If the disorder is strong enough the current of particles will eventually vanish; then at
very long time we expect a power-law decay for the FPTD, with maybe some new exponent
depending on the strength of the disorder. Nevertheless, in the intermediate-time regime,
when the anomalous current is still non-null, it is not clear how the behaviour of the FPTD is
influenced by the strength of the bias.

In the present paper, we consider all these interesting questions by using the continuous-
time random walk (CTRW) approach, i.e., the Hartree approximation, to tackle problems of
weak and strong disorders. In addition, we also consider the situation when there are stagnant
volumes or dead ends in heterogeneous media. Therefore, a full analysis of the transport
process is made by using a multiple path approach in the Hartree approximation, i.e., the
transport is described in terms of a multistate CTRW process [17].

2. The propagator of the continuous-time random walk

In the CTRW description the probability of just arriving at site s at time t (given the initial
condition at site s0 at time t0 = 0) R(s, t | s0, 0) fulfils the continuous-time recurrence relation

R(s, t | s0, 0) = δs,s0δ(t) +
∫ t

0

∑
s ′

η(s − s ′, t − τ)R(s ′, τ | s0, 0) dτ. (1)

The key function, η̂(k, u), is the Fourier–Laplace representation of the hopping-waiting-time
function η(s − s ′, t); this function completely characterizes the single-state CTRW process

η̂(k, u) = Fk[Lu[η(s, t)]]. (2)

In the continuous space limit (i.e., x = as where a → 0 with s = 0,±1,±2, . . .) the
propagator of the continuous-time random walk (CTRW) process reads [18], in the Laplace
representation and in one dimension (1D)

Ĝ(x, u) dx = dx

2π

∫ +∞

−∞
φ̂(u)[1 − η̂(k, u)]−1 e−ikx dk, (3)

where

φ̂(u) = Lu

[
1 −

∫ t

0
η(k = 0, t ′) dt ′

]
= 1 − ψ̂(u)

u
(4)

is the Laplace representation of the sojourn probability φ(t) at any site s.
In the particular ‘separable’ case we get η̂(k, u) = λ(k)ψ̂(u), then λ(s − s ′) is the

hopping-lattice structure of the walks and ψ(t) is the fundamental waiting-time density that
characterizes the stochastic delay of the walks at any site. In the 1D continuous space limit,
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assuming a ‘finite’ one-step variance and a bias to the right we can write

λ(k) = Fk[λ(s)] =
∑

s

λ(s) eiks

= px eika + (1 − px) e−ika

= 1 + iVτk − Dτk2 + O(a2k2), (5)

where V = (2px − 1)a/τ is the external mean velocity (Darcy velocity), D = a2/2τ is
the diffusion coefficient in the absence of advection, and τ is a characteristic scale of time4.
Therefore, in the separable case the Green function is Ĝ(x, u) = F−1

k [φ̂(u)[1−λ(k)ψ̂(u)]−1].
Using approximation (5), integral (3) can analytically be done and the result reads

Ĝ(x, u) =
exp

(−|x|
√

u

Λ̂(u)Dτ
+

( V
2D

)2
+ x

( V
2D

))
Λ̂(u)Dτ

√
u

Λ̂(u)Dτ
+

( V
2D

)2
, (6)

with

Λ̂(u) ≡ uψ̂(u)

1 − ψ̂(u)
. (7)

Here Λ̂(u) is the effective transition rate in the corresponding associated generalized (non-
Markovian) master equation (ME) that governs the evolution of the Green function of the
CTRW process (see [8, 10] and references therein). As we mentioned before (see footnote
4), in the Markovian limit (using an exponential waiting time ψ(t) = e−t/τ /τ ) the memory
kernel is a delta function, so Λ(t) = τ−1δ(t), where τ is the characteristic time-scale between
each step of the walk.

3. The first passage time distribution in the CTRW approach

Introducing the relation between the FPTD and the propagator in the CTRW approximation,
see appendix A, we get

F̂ (x, u) = Ĝ(x, u)/Ĝ(x = 0, u). (8)

Thus we can study the explicit solution for the FPTD in the presence of bias and disorder
(to be in x = L > 0, having started the walk at t = 0 in x = 0). The FPTD is given by

F̂ (L, u) = exp


−

√
uL2

Λ̂(u)Dτ
+

(
LV
2D

)2

+

(
LV
2D

)
 , (9)

where Λ̂(u) is given in (7). Note that because the bias is to the right, the interesting FPTD is
for x > 0. The memory kernel Λ(t) can be related to the waiting-time density ψ(t) and the
sojourn probability φ(t) by the integral equation

ψ(t) =
∫ t

0
Λ(t − t ′)φ(t ′) dt ′. (10)

We are interested in memory kernels which can reproduce typical behaviours in problems of
hydrodynamics dispersion [17]. This fact poses some restriction in the models of the waiting-
time densities ψ(t) that we will use (for example, the mean current J (t) ≡ d〈x(t)〉/dt should
be well behaved at all times).

4 In the Markovian case τ is the parameter that characterizes the Poisson probability of the number of steps in a
given interval of time [0, t].
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Normal hydrodynamics dispersion is easily reproduced by considering the Markovian
case. So using ψ̂(u) = (1 + τu)−1, we get Λ̂(u) = τ−1. In heterogeneous systems, i.e., in the
presence of disorder, we should consider non-exponential waiting-time functions ψ(t), which
lead to Laplace-dependent kernels Λ̂(u). Note that Λ̂(u = 0) is a time integral, which in the
context of linear response theory says that the diffusion coefficient is related to the velocity
autocorrelation function. If the velocity autocorrelation function ensures the convergence of
that integral, the process is normal (diffusive). If the integral diverges we are dealing with a
superdiffusive process, and if the integral vanishes we have a subdiffusive process.

3.1. About the Hartree approximation

In general we can say that for a ME in the presence of weak (site) disorder all the inverse
moments of the transition probability rate ws of the ME (from site s) are finite, so we can write
for the waiting-time density of the associated CTRW process (i.e., the Hartree approximation
[19]) ψ̂(u) = ∑∞

n=0(−1)n
〈(

1
ws

)n〉
un. Thus in the asymptotic limit u → 0 we get

ψ̂(u ∼ 0) 	 1 − τu, with τ =
〈

1

ws

〉
.

A possible bi-parametric model for a waiting-time density characterizing a weak
disordered system is

ψ̂(u) = (1 + τu)−b, for τ > 0, b > 0, (11)

thus:

Λ̂(u) = u

(1 + τu)b − 1
. (12)

The case when b is an integer is very simple to work out. We just mention that b = 1 gives
the well-known δ-Dirac kernel, and b = 2 gives Λ(t) = exp(−2t/τ )/τ 2, etc. For b > 2 the
kernel Λ(t) goes to zero for t → 0, on the other hand Λ(t → ∞) → 0+. Moreover from (12)
for the case b < 2 we get

Λ(t = 0) = lim
u→∞ uΛ̂(u) → +∞,

and

Λ(t = ∞) = lim
u→0+

uΛ̂(u) → 0+.

In figure 1 we show the memory kernel in the time representation, for weak disorder model
(11) through a numerical integration of (12) for several b using the LAPIN program [20]. In
the case b = 0.5 the limit Λ(t → 0) → ∞ is not plotted due to numerical problems in the
integration. Here we emphasize that in this paper we are only interested in the case b � 1, in
order to fulfil a well-behaved current (finite at all time) to fit hydrodynamic experiments. It is
simple to see by taking the inverse Laplace transform that the waiting time (11) is related to
the gamma density to characterize the random delay of the walks [21]:

ψ(t) = 1

τ

(
t

τ

)b−1 exp(−t/τ )

�(b)
. (13)

We immediately realize that ψ(t) has well-defined moments 〈tq〉, q = 1, 2, 3, . . . (for example,
〈t〉 = τb, 〈t2〉 = (1 + b)bτ 2, etc). Note that this density becomes sharp in the limit
bτ 2 → 0; in fact, in the limit b → ∞, τ → 0 with τb → constant we get the singular
result ψ(t) → δ(t − τb). For values b < 1 it is possible to see that the waiting-time density
(13) diverges in the limit t → 0, therefore leading to a divergent current at short times. On the
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Figure 1. Typical temporal behaviour, in dimensionless time, of the memory kernel 	(t) for weak
disorder (11) with τ = 1 and for different values of positive b. Note that for the case b < 1 the
memory kernel is not always positive.

other hand, for b > 1 the renormalized kinetic coefficients turn out to be smaller than in the
Markovian case (b = 1), as is expected for random walks in the presence of weak disorder.
Note that for fixed τ and in the limit b → ∞ the diffusion coefficient asymptotically vanishes
because Λ̂(u = 0) = ∫ ∞

0 Λ(t) dt = (τb)−1 → 0.

In the presence of strong disorder (subdiffusion problems) some moments of the inverse
of the transition rates ws of the ME may diverge; then in the associated CTRW context the
function ψ̂(u) turns to be non-analytic around u ∼ 0; thus we expect an asymptotic form like
(see appendix B)

ψ̂(u ∼ 0) ∼ 1 − C1u
θ , with 0 < θ < 1, C1 > 0. (14)

In this case, for example, we can choose the following bi-parametric model of waiting-time
density to characterize a (strong) disordered system

ψ̂(u) = 1

1 + C1uθ
, ∀u with 0 < θ < 1. (15)

Note that for θ < 1 the constant C1 = τ θ is not related to any moment of the random delay
of the walker because all the integer moments 〈tq〉 are divergent quantities. Using model (15)
for the waiting-time density, the memory kernel adopts the expression

Λ̂(u) = 1

C1uθ−1
= u

(τu)θ
. (16)

In the context of the analysis of a power-law distribution, to characterize random delays
free of scaling, we show in the figure of appendix B a plot of a memory kernel associated with
the model of strong disorder (14). In particular, in that figure we also show a memory kernel
Λ(t) corresponding to a situation of strong disorder but with the possibility of having some
finite moments for the random waiting times.

The interesting point, in the statistics of the passage times of the walks, is to analyse the
non-trivial competition between the disorder (localization) and the drift (bias). In general for
any kind of disorder the expression (9) cannot be transformed back, analytically, into the time
representation, but it can be done by numeric integration.
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Figure 2. Circuit of the Cauchy integral (17) corresponding to the Markovian case, and for the
asymptotic limit in the weak disorder case.

3.2. Markovian case

The Markovian case (the ordered one) can analytically be done and its integration teaches us
information which will be useful in the non-Markovian analysis (the disordered one). From
(9) and (12) with b = 1 we see that we need an inverse Laplace of the form (F (L, t) ≡ F(t)):

F(t) = 1

2π i

∫ c+i∞

c−i∞
exp(−

√
Au + B2 + B) eut du

= eB

2π i

∮
C

exp(−
√

z + B2) ezt/A dz

A
, (17)

with

B ≡ LV
2D

, A ≡ L2

D
.

Here the Cauchy integral C has to be done in such a way to go on the path c − i∞ → c + i∞,
where c is to the right of all the singular points of the integrand. In this case, exp(−√

z + B2)

has a branch cut, and thus we can do the Cauchy integral in the form as is shown in figure 2.
After some algebra the result is:

F(t) =
√

A

4πt3
exp

(
B − B2t

A
− A

4t

)
. (18)

This result tells us that the presence of a bias, B �= 0, introduces an exponential decay factor
e−B2t/A in the FPTD. Physically this means that the peak of the propagator is moving to the
right with a finite velocity d〈x(t)〉/dt . As a matter of fact, this is nothing more than the Laplace
shift theorem applied to (17).

Noting from (18) that in the Markovian case, the long-time asymptotic exponential
contribution can be written in the form

exp

[
LV
2D

(
1 − Vt

2L

)]
, (19)
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we can identify the term Vt/2L to be proportional to a current, i.e.,∫ t

J (t ′) dt ′ ∼ t
d〈x(t)〉

dt
, (20)

a quantity which ultimately is associated with the movement, to the right, of the peak of the
propagator.

Our next conjecture is that expression (19) can also be used, asymptotically, in the non-
Markovian case when the disorder only introduces a renormalization in the kinetic coefficients.
This situation is just what happens in the presence of weak disorder (b �= 1). Thus in order to
write the term

∫ t J (t ′) dt ′ we define the effective velocity:

Veff ≡ lim
t→∞

d

dt
〈x(t)〉 = lim

t→∞
d

dt

∂

∂(ik)
G(k, t)

∣∣∣∣
k=0

, (21)

and write for the non-Markovian case the generalization

exp

(
LV
2D

[
1 − 1

2L

∫ t

J (t ′) dt ′
])

	 exp

(
LV
2D

[
1 − Veff

2L
t

])
. (22)

Therefore if the effective current is not null, the full asymptotic behaviour of the FPTD can be
approximated, for any b, by

F(t → ∞) ∼ t−3/2 exp

(
−LV

2D
Veff

2L
t

)
, (23)

showing the expected crossover from t−3/2 to e−Ct , even in the presence of weak disorder.

3.3. Weak disorder case

From (9) and (12) we see that still in the case of weak disorder it is difficult to analytically
calculate the Cauchy integral

F(t) = eB

2π i

∮
C

exp

(
−

√
zL2

Λ̂(z)Dτ
+ B2

)
ezt dz, (24)

with B ≡ LV/2D. Nevertheless, we know that if the disorder is weak, in general, we obtain
asymptotically for z → 0: zL2/(Λ̂(z)Dτ) → z×const. The long-time behaviour of the FPTD
can thus be characterized by the approximation (23). From the Green function of the CTRW
process it is simple to see that the first moment, in the Laplace representation, is given by:

〈x̂(u)〉 = ∂

∂(ik)
φ̂(u)[1 − λ(k)ψ̂(u)]−1

∣∣∣∣
k=0

= Vτψ(u)

u(1 − ψ(u))
. (25)

Then when ψ̂(u) is given by (11), noting that Veff = limu→0[u2〈x̂(u)〉] and using the Laplace
theorem, it follows that Veff = V/b. Thus for weak disorder the asymptotic behaviour
(t  bτ) of the FPTD follows using this value of Veff in (23).

As we mentioned, model (11) corresponds to a gamma distribution for the statistics of the
random waiting times of the walks. We know that if the statistics is not Poissonian there will
be a non-Markovian transient, but because the disorder is weak there is not localization, so at
long time there will always be a current restoring the Laplace shift. Thus, as we expected, the
crossover to e−Ct appears in the long-time limit of the FPTD. As we commented before, this
is a consequence of the asymptotic existence of an effective drift velocity Veff . In figure 3 we
have plotted F(t) given by (9) against approximation (23), for the case L = 1,V = 1 (this
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Figure 3. Log–Log plot for the FPTD as a function of t (in dimensionless time) for L = 1,V = 1
with D = 1 in the presence of a bias to the right and weak disorder (11). The FPTD is obtained
from the Laplace inversion of (9) for τ = 1 and several values of b. The continuous line shows the
asymptotic behaviour (23), i.e., the expected crossover from t−3/2 to e−Ct .

corresponds to work with dimensionless variables: x ′ = x/L and t ′ = tV/L) with D = 1 and
different values for the parameter b characterizing weak disorder. From this plot it is simple
to check the existence of the aforementioned crossover.

The sharp peak appearing in the transient of the FPTD when b  1 can heuristically be
understood by analysing the behaviour of the propagator of the CTRW. To see this easily let
us calculate the short-time behaviour of the first moment 〈x(t)〉. Using (25) and (11) it is
possible to see that at short times we get

〈x(t ∼ 0)〉 ∼ Vτ 1−b

�(1 + b)
tb,

in contrast to the long-time behaviour

〈x(t → ∞)〉 ∼ V
b

t = Veff t.

Thus, even when at long times there is a well-defined effective velocity, at short times when
b > 1 the peak of the propagator is moving faster than linear in time; this leads to the fact
that there are particles that could cross the level x = L (for the first time) earlier than in the
Markovian case (b = 1). When b  1 this effect is enlarged therefore leading to a remarkable
peak at short times, see figure 3 for the case b = 1.9.

3.4. Strong disorder case

In the presence of strong disorder, for example using the model given by equation (15), it is
simple to check that: zL2/(Λ̂(z)Dτ) ∼ zθ× const., so in principle we should try to solve—at
least asymptotically—the following Cauchy integral to get an analytic approximation in the
long-time regime

F(t) = eB

2π i

∮
C

exp(−
√

Azθ + B2) ezt dz, (26)

with

A = L2τ θ−1

D
, B ≡ LV

2D
, 0 < θ < 1.
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Unfortunately this integral is much more complex than that associated with weak disorder;
i.e., with θ = 1. For example, the branch cut associated with the weak disorder case (see
figure 2) does not arise trivially from (26), in the limit θ → 1.

In the strong-disorder case, using (25) and (14), the asymptotic moment gives 〈x̂(u ∼
0)〉 ∼ Vτ 2(τu)−(θ+1), then using the Tauberian theorem [10] we find that the asymptotic
current behaves like

J (t → ∞) ∝ lim
t→∞

d

dt
〈x(t)〉 ∼ lim

t→∞ t θ−1, θ ∈ (0, 1). (27)

This means that the current eventually will be null, even in the presence of no absorbing
boundary condition! This is a remarkable result that was, in fact, pointed out in the pioneering
works of the CTRW (see references [8, 10] and references therein).

Noting that in (26) we can introduce a series expansion for exp(−√
Azθ + B2 + B) to

carry out a perturbation in zθ ∼ 0 (if A/B2 � 1), we get (when B �= 0 and θ �= 1)

exp(−
√

Azθ + B2 + B) ≈ 1 − A

2B
zθ +

A2(1 + B)

8B3
z2θ − A3(3 + 3B + B2)

48B5
z3θ

+
A4(15B2 + B4 + 3B(5 + 2B2))

384B8
z4θ · · · . (28)

Then the asymptotic behaviour of F(t) follows from the application of the Tauberian theorem
to each of these contributions. Assuming α to be irrational, we know that asymptotically for
u → 0 (t → ∞)

L−1
u [u(n+1)α−1] ∼ t−(n+1)α

�(1 − (n + 1)α)
, (29)

with

0 < α < 1, n = 0, 1, 2, . . . ,

where �(x) is the gamma function [21]. Therefore, in particular, from (28) and (29) when θ

is irrational we obtain the alternating converging series [19]5

F(t) ≈ − A

2B

t−(θ+1)

�(−θ)
+

A2(1 + B)

8B3

t−(2θ+1)

�(−2θ)
− A3(3 + 3B + B2)

48B5

t−(3θ+1)

�(−3θ)

+
A4(15B2 + B4 + 3B(5 + 2B2))

384B8

t−(4θ+1)

�(−4θ)
· · · . (30)

When θ is rational, the change in this result is that terms in which nθ is an integer ought to be
omitted from the sum. Note that result (30) does not apply in the limit θ → 1. In figure 4 we
have plotted F(t) from (9) using (16) for the case θ = 1/2, against the dominant long-time
limit:

F(t) ∼ t−(1+θ). (31)

From this plot we see that the transient and the long-time regime of the FPTD is mainly
controlled by the asymptotic power law (31). So in the presence of strong disorder there is
not a crossover to e−Ct as occurs with weak disorder (θ = 1). The strong disorder breaks the
application of the Laplace shift theorem.

5 In fact, this expansion is equivalent to the asymptotic behaviour of the FPTD presented by Scher and Montroll [19].
See appendix A to be aware of the approximation made in calculating the FPTD for non-Markovian walks.
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Figure 4. Log–Log plot for the FPTD as a function of t (in dimensionless time) for L = 1,V = 1
with D = 1 in the presence of a bias to the right and strong disorder (15). The FPTD is obtained
from the Laplace inversion of (9) for τ = 1 and θ = 0.5 against the asymptotic power-law
behaviour (31).

4. Transport with multiple families of paths

In this section, we are going to use the previous formulation in calculating the passage time
statistics of asymmetric walks, but in the particular case when there are multiple families of
paths [22]. This is an important step in order to address problems of hydrodynamics dispersion
considering the possibility that the transport could be affected by stagnant domains, etc (i.e.,
connected and non-interconnected pores). In other words, it is well known that most natural
porous media, such as oil reservoirs, contain some dead-end pores. A fluid in such pores
communicates with the flowing fluids only by molecular diffusion. Such a mechanism of
mass transfer between the flowing fluids and the dead-end pores was invoked many years
ago [23, 24]. In particular in a very interesting paper concerning non-interconnected pores
(porosity and permeability), Bouchaud et al [25] studied stagnation effects in hydrodynamics
dispersion. Here we are going to implement that model in our approach, in order to consider
also molecular diffusion in the description.

One of us in a previous paper [17] has shown that transport in the presence of multiple
paths can be understood in the context of the multistate CTRW approach [26]. Thus instead
of the continuous-time recurrence relation (1) we now use

Rl(s, t | s0, 0) = δs,s0δl,l0δ(t) +
∫ t

0

∑
l′

∑
s ′

ηll′(s − s ′, t − τ)Rl′(s
′, τ | s0, 0) dτ. (32)

The matrix Green function, i.e., the solution of the multistate CTRW process, is analogous to
the one we have already mentioned in (3), but now considering matrices in order to take into
account the internal states of the multistate CTRW process, see [17].

It is possible to see that a generalization of the Bouchaud et al model can be implemented
by using the following waiting-time matrix:

η(k, t) =
(

λ(k)ψT
1 (t)φE

1 (t) ψE
12(t)

φT
1 (t)ψE

21(t) 0

)
, (33)
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where

φT
1 (t) = 1 −

∫ t

0
ψT

1 (t ′) dt ′ (34)

is the sojourn probability into the transport path (labelled by state l = 1), and ψE
12(t), ψ

E
21(t)

are the waiting-time densities associated with the exchange of the paths. Consistently

φE
l (t) = 1 −

∫ t

0
ψE

l′l (t
′) dt ′, {l, l′} = 1, 2 (35)

are the sojourn probabilities from the exchange mechanism.
A dynamical disorder model related to that of [25] can be considered by using

ψE
12(t) = ψ(t) (36)

which is the waiting-time density from the stagnant domains (labelled by state l = 2) to the
transport path, and

ψE
21(t) = ν21 exp[−ν21t], (37)

characterizing the reverse process, i.e., the probability density to jump to the stagnant domains
from the transport path, thus φE

1 (t) = exp[−ν21t]. On the other hand, if the hopping mechanism
into the transport path is Markovian, we can use

ψT
1 (t) = 1

τ
exp

[
− t

τ

]
. (38)

From definitions (36), (37) and (38), after some algebra and taking the Laplace transform we
get from (33) that

η̂(k, u) =
(

λ(k)(u + τ−1 + ν21)
−1/τ ψ̂(u)

ν21(u + τ−1 + ν21)
−1 0

)
. (39)

It is simple to see that if λ(k) characterizes a directed random walk in a 1D regular lattice
of spacing a, we have to use λ(k) = eika; we will come back to this case in section 4.2. In
addition, in order to compare our model with the quench disorder directed random walk model
of [25] we should identify a/τ = V, ν21 = p/τ , and the distribution of the random waiting
times from the stagnant domain (36) should be characterized by

ψ̂(u) =
∫ ∞

0
e−utψ(t) dt =

∞∑
n=0

(−1)n

n!
〈tn〉un. (40)

In figure 5 we show a sketch of a directed random walk with quench disorder (Bouchaud and
Georges model), and the present molecular diffusion model with random stagnant domains
(dynamical disorder model). The case when the random waiting times from the stagnant
domain are free of scaling can also be worked out in a similar way [17].

Now, let us introduce in (39) a 1D (continuous in space) model with molecular diffusion,
thus we can consider the lattice hopping structure λ(k) to be approximated as in (5) by

λ(k) = px eika + (1 − px) e−ika

= 1 + i(2px − 1)ak − 1
2a2k2 + O(a2k2).

Using the initial condition that the walker was in x = 0 at t = 0 into the transport path (l = 1),
the Green function (see [17]) reads:

Ĝ(k, u) = 2τ

a2k2 − i2ak(2px − 1) + 2τ [ν21(1 − ψ̂(u)) + u]
, (41)
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Figure 5. (a) Sketch of a directed random walk in the presence of stagnant domains, using a
quench disorder modelling. (b) Sketch of a random walk in the presence of stagnant domains,
using a dynamical disorder modelling.

and so the FPTD (in the Laplace representation) to cross the level x = L is

F̂ (L, u) = exp


−

√
L2τ [ν21(1 − ψ̂(u)) + u]

a2/2
+

(
L(2px − 1)

a

)2

+

(
L(2px − 1)

a

)


= exp


−

√
uL2

Λ̂MP(u)Dτ
+

(
LV
2D

)2

+

(
LV
2D

)
 , (42)

where in the second line we have used the same notation as in (9). Thus we see that for the
multiple paths model (with disorder) we can define an effective memory kernel

Λ̂MP(u) = u

τ [ν21(1 − ψ̂(u)) + u]
. (43)

Therefore using the multiple paths model (39), we see that asymptotically at long times the
dominant behaviour of the FPTD is controlled by the competition between (1 − ψ̂(u)) against
u; thus when there is simultaneously a bias and disorder the occurrence of the crossover t−3/2

to e−Ct will have the same analysis as we have studied before (without multiple paths, see
equation (23)). Nevertheless, the inclusion of multiple paths changes the description of the
transient of the FPTD, therefore introducing finite-size effects. That result is crucial in the
context of oil-recovery experiments in porous rocks. We remark that for the present model of
multiple paths, a possible anomalous long-time behaviour of the FPTD is controlled by the
waiting time into the stagnant domains. Moreover, the occurrence of an asymptotic dominant
behaviour ∼e−Ct , for the FPTD decay, appears if the waiting-time density into the stagnant
domains has finite moments. In other words, only a waiting time as in (40) will lead to a
non-null effective velocity Veff (see (20) and (44)).
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It is interesting to compare the effective memory kernel (43) with the one that appears
without multiple paths Λ̂(u) = uψ̂(u)/(1 − ψ̂(u)). Here we should emphasize that in the last
case ψ̂(u) is the waiting time of a single-state random walk (see equation (7)). Nevertheless, in
(43) ψ̂(u) is the waiting time of a two-state random walk when the walker is into the stagnant
domains. Note that the waiting time of the walker into the transport paths has been taken to be
exponential (see (38)). It is simple to see from equation (43) that the present multiple paths
model reduces to the so-called Coats–Smith profile when ψ(t) = ψE

21(t) and ν21 ≡ Kc (see
[17]).

From the previous results we can conclude some expressions for the kinetic coefficients.
In general, for the present two-state random walks model with arbitrary ψ̂(u) we get

〈x̂(u)〉 = a(2px − 1)

τ (u + ν21(1 − ψ̂(u)))2

= V
(u + ν21(1 − ψ̂(u)))2

, (44)

where in the last expression we have used our old notation (see equation (5)). Note that
in the particular case when ψ(t) has a long-time tail (characterized by ψ̂(u) ∼ 1 − (τu)θ )
the current of particles is asymptotically at long times given by J (t) ∝ V/(ν21τ)2(t/τ )2(θ−1).
Therefore announcing a faster power-law decay in comparison with the one from a single-state
anomalous random walks model, see (27). From our two-state random walks model, with
arbitrary ψ̂(u), we get for the second moment

〈x̂(u)2〉 = 2V2

(u + ν21(1 − ψ̂(u)))3
+

2D
(u + ν21(1 − ψ̂(u)))2

. (45)

Note that only in the case of null transition towards the stagnant domains (ν21 = 0), the
dispersion is normal, i.e., {〈x(t)2〉 − 〈x(t)〉2} = 2Dt . In the particular case when the waiting-
time density (from the stagnant domains) can be expressed as in (40), the dispersion coefficient
of the process turns out to be time-dependent

D = lim
t→∞{〈x(t)2〉 − 〈x(t)〉2}/2t

∼= D
V2

U 2 +
〈t〉
2V2

U 4ν21t. (46)

Only in the limit ν21t � 1 we get a constant behaviour D ∝ U 2, where U is the macroscopic
mean velocity of the test particle. This means that the fluctuation in the transient time, induced
by the delay in the stagnant domains, gives rise to an enhanced diffusion phenomenon. Thus, as
a result of this multiple paths model, the hydrodynamics dispersion coefficient of the process
is expected to be enhanced linearly in time. As we commented before, D is the diffusion
coefficient in the absence of advection and V is the Darcy velocity. On the other hand, 〈t〉
is the mean trapped time into the stagnant domains and ν21 is proportional to the fraction of
dead-end volumes in the heterogeneous porous media. Note that in expression (46) we have
used the definition of the mean velocity U as

U = L/T = V
ν21〈t〉 + 1

,

where T = ∫ ∞
0 t ′F(L, t ′) dt ′ = −∂F̂ (L, u)/∂u|u=0 is the mean value of the time that the test

particle need to cross the level L for the first time, i.e., the mean first passage time. A more
accurate value for the macroscopic mean velocity would be 〈L/t ′〉. Unfortunately the quantity
〈1/t ′〉 is hard to calculate analytically, but it can be done numerically from F(L, t ′).

In general, our formula for the FPTD gives us the possibility of studying the transient
of test particles, as is needed in the analysis of oil recovery experiments in heterogeneous
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Figure 6. Log–Log plot for the FPTD as a function of t (in dimensionless time) for L = 1,V = 1
with D = 1 in the presence of a bias to the right and weak disorder (11) in the multiple paths
approach. The FPTD is obtained from the Laplace inversion of (42) for τ = 1 and b = 1.1 for
several values of ν21, the inset shows the corresponding critical length.

media. In addition, we mention here that from our approach we can go beyond the so-called
Coats–Smith profile [24, 17] because we can introduce disorder in the transport description.
In figure 6 we show the FPTD from (42) for the case L = V = D = τ = 1, using for
ψ̂(u) the model of weak disorder (11) with b = 1.1, and for several values of the fraction of
non-interconnected pores ν21. From this figure it is possible to realize the important difference
in the transient regime of the FPTD when it is compared with the same weak disorder model
ψ(t) but without multiple paths. In other words, the multiple paths approach incorporates the
notion of a fraction of non-interconnected pores and in addition the distribution of porous sizes
through the waiting-time model (40). The multiple paths model leads to finite-size effects
as was reported in a previous work [17]. We remark that in the present paper we are also
considering the inclusion of weak disorder in the characterization of the critical length. The
case ν21 = 0 corresponds to the single-state Markovian random walks.

4.1. About the finite-size effects

From (43) it is possible to characterize a critical length Lc from which we can analyse finite-
size effects in this non-Markovian multiple path model of disorder. In order to define a
characteristic length we now introduce the dimensionless variables

x ′ = x/L, t ′ = tV/L.

If we had a Gaussian profile the maximum of the FPTD FGauss(t, x) would be located at the
dimensionless time [17]:

t ′Max = − 3

B
+

√(
3

B

)2

+ (2x ′)2, B ≡ LV
2D

.

In the case when ψ̂(u) is given by (40) (i.e., characterizing a heterogeneous medium) it is
possible to see, from (43), that a Gaussian behaviour is approached when

�c ≡ (ν21〈t〉 + 1)

ν21〈t2〉  u,
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where �−1
c is a characteristic non-Markovian time-scale. Then, finite-size effects are expected

to occur if the condition t ′Max � �−1
c V/L is fulfilled. Going back to the old variables we get

that the condition to find finite-size effects is

x � 3D
V

√(
ν21〈t2〉V2/D
6(ν21〈t〉 + 1)

+ 1

)2

− 1 ≡ Lc, (47)

i.e., if x  Lc we do not expect finite-size effects. Note that for ν21 → 0 the finite-size effects
are not expected. In particular, using the weak disorder model (11) to characterize the random
waiting times from the stagnant domains we get the critical length

Lc = 3D
V

√(
ν21(1 + b)bτ 2

6(ν21τb + 1)

V2

D
+ 1

)2

− 1.

As we commented before, in figure 6 we have plotted the FPTD for the case L = 1 and
weak disorder (11) for several values of ν21, thus from this plot we can test our finite-
size characterization. For example, for the values of non-interconnected pore fraction
ν21 (= 0.1, 1, 10) we get for the critical length Lc (= 0.7969, 1.8980, 2.5887), thus showing
that by increasing ν21 the finite-size effects are enlarged. From this plot it is simple to see
the remarkable ‘bump’ occurring at early times for the case ν21 = 10, this is so because
L � Lc. If we had plotted the same FPTD but for L  Lc (for example 5, 10, etc) this
particular anomalous transient would have disappeared; in contrast, for L (= 0.5, 0.1) using
the same value of ν21 the finite-size effects are enlarged. Another very interesting parameter
to test this finite-size condition is the value of the Darcy velocity V . On the other hand,
note that the dependence of Lc with a large diffusion coefficient D can heuristically be
understood in terms of pure diffusion. Other models of weak disorder can also be analysed
in a similar way; for example, as is expected, by increasing the dispersion of the random
waiting times from the stagnant domains, ∝〈t2〉, the finite-size effects are enhanced. Here
it is interesting to point out that by introducing ψ(t) = ψ21(t), i.e., using 〈t2〉 = 2ν−2

21 , and
〈t〉 = ν−1

21 in (47) the critical length of the Coats–Smith profile is reobtained. So our result (47)
generalizes the finite-size analysis of [17] for the case when there is disorder in the medium.
We emphasize that in [17] the analysis of Lc was done in a homogeneous approximation (also
the scaling x ′, t ′ was different), i.e., using the Coats–Smith equation. Interestingly, from the
present results, the long transient and the plateau of the finite-size effect could lead to the
misleading interpretation that the decay of the FPTD is a power law. But we emphasize—as
we have already proved—that in the presence of weak disorder, at very long time after the
crossover, the FPTD decay is controlled by a drift contribution ∝e−Ct (see our remark after
equation (43)).

4.2. About the directed random walk model

In the directed random walk case, i.e., when λ(k) = eika, it is not necessary to go to the
continuous limit (ka → 0) to do all the calculations. In fact it is possible to see that the
analytical expression for the FPTD (in the Laplace representation) is

F̂ (L, u) = Ĝ(L, u)/Ĝ(0, u)

= (1 + τ [u + ν21(1 − ψ̂(u))])−L/a. (48)

Here, it is important to compare this expression with the one coming from the quenched
disorder model of [25]

F̂ QD(L, u) = e−Lu/V (1 − p + pψ̂(u))L/a. (49)
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Note for example that for the particular case p → 0, this solution gives F̂ QD(L, u) = e−Lu/V ,

which corresponds to the sharp distribution: FQD(L, t) → δ(t − L/V ). A solution that is
conceptually different from the one that is obtained using (48) in the corresponding particular
limit ν21 → 0, i.e., the Poisson solution F(L, t) → tL/a−1 e−t/τ /{τ(L/a − 1)!}.

Here we would like to point out that from equation (49) and in the limit p → 1 the
solution gives [25]

FQD(L, t)|p=1 =
{
L−1

u [ψ̂(u)L/a]|t−L/V for t > L/V

0, for t < L/V.

Nevertheless, from our model, using (39) in the case when there is no hopping at all (i.e.,
λ(k) = 1) this spurious result does not appear.

5. Discussion

From the present work we can understand the transient and the long-time behaviour of the
statistics of passage times of asymmetric non-Markovian walks. We have discussed the first
passage time distribution in the presence of bias and disorder, in the context of the continuous-
time random walk theory. A detailed and comprehensive analysis in terms of the important
parameters of the problem has been done; in particular, we have shown the temporal behaviour
of the associated memory kernel 	(t) (the velocity autocorrelation function of the process)
for different classes of disorder.

The results that we have presented are important in the analysis of hydrodynamics
dispersion of stratified disordered media [27–29]. As a matter of fact, if in addition there
are many transport paths—which could appear due to stagnant domains in the heterogeneous
porous media—the situation has been analysed considering internal states in the master
equation, to emulate the different families of paths that may appear in the random media
[22]. In the present paper we focus the problem of the presence of stagnant volumes, but our
approach can also be extended to consider fractures in the porous media as alternative paths
[17].

We have analysed the occurrence of the crossover t−3/2 to e−Ct in the first passage
times distribution when there is bias and weak disorder in the transport process. We have
compared the statistics of these passage times, with and without multiple paths, and we have
shown the relevance of the multiple paths approach to understand the problem of the transient
anomalous dispersion (finite-size effects). With all of this information we have calculated some
kinetics coefficients; in particular, we have shown the occurrence of an enhanced dispersion
in the presence of stagnant domains (see (46)). In addition, all the transient information
is encoded in formula (42), and any moment of the passage times can easily be calculated
by differentiation of F̂ (L, u). In the case of weak disorder the finite-size analysis has been
carried out generalizing our previous studies on the Coats–Smith profile [17], in particular the
critical length Lc has been given in terms of the parameters that characterize the weak disorder
(see equation (47)). A comparison with the model of directed random walks with quenched
disorder [25] has been quoted in section 4.2.

To summarize, the first passage time distribution of a test particle in a heterogeneous
medium has been estimated in the context of the Hartree approximation (CTRW modelling).
Therefore, the response to the injection of a pulse when there are stagnant domains and when
the transport is controlled by molecular diffusion and advection has been presented. Our
approach allows us to calculate not only the long-time behaviour but also the transient of
complex transport processes, like the anomalous hydrodynamics dispersion we have reported
in this paper. As a matter of fact, in the petroleum industry, inter-well tracer tests are one
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of the most important tools for the diagnostic and characterization of the oil reservoir in the
secondary oil recovery process [30]. An adequate interpretation of the residence time of the
tracer into the well gives essential information about the disordered matrix of the porous media
[31]. In a future work, we will analyse these experiments in heterogeneous porous rocks by
doing nonlinear least-squares fits from our analytic solution in the Laplace representation.
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Appendix A. Concerning the first passage time distribution

Here we are going to present an alternative point of view to understand the meaning of the
convolution equation (8) governing the FPTD [8]. From this approach it will be clear that
the definition of the FPTD used in the context of the CTRW is only exact for the Markovian
case, or alternatively under the assumption of the synchronized condition. It is interesting to
remark that, to our knowledge, the only references wherein this fact has been considered are
[8, 16, 17, 32].

Let the conditional probability Pr(A | C) for the event A, given that the event C is sure,
be written in the form

Pr(A | C) =
∑
{Bn}

Pr(A ∩ Bn | C), A ∩ Bn �= ∅, ∀n, (A.1)

where {Bn} is a set of ordered events. Consider now the particular situation when

A ⇒ event x(t)

Bn ⇒ event x(tn) = x∗ for the first time

C ⇒ event x(t0) = x0.

Then, (A.1) can be written in the form

P(x, t | x0, t0) =
∑
{n}

P(x, t | x∗, tn; x0, t0)F (x∗, tn | x0, t0), t �= t0, (A.2)

where F(x∗, tn | x0, t0) is the probability distribution to cross the level x∗ at time tn for the first
time, having started the walk from x0 at time t0. If we now assume that the time is continuous,
we can write

P(x, t | x0, t0) = φ(t − t0)δx,x0 +
∫ t

t0

dt ′ P(x, t | x∗, t ′; x0, t0)F (x∗, t ′ | x0, t0), (A.3)

where φ(t − t0) is the sojourn probability to remain in x0 without having left this site since the
beginning of the walks. In particular we can use (A.3) for x(t) = x∗ and t0 = 0, then we get

P(x∗, t | x0, 0) = φ(t)δx∗,x0 +
∫ t

0
dt ′ P(x∗, t | x∗, t ′; x0, 0)F (x∗, t ′ | x0, 0). (A.4)

A schematic draw representing some of the paths contributing to the continuous-time
relation (A.4) is shown in figure 7. If the stochastic process is Markovian we know that
P(xj , tj | xj−1, tj−1; · · · ; x0, t0) = P(xj , tj | xj−1, tj−1), then we can write from (A.4) the
relation

P(x∗, t | x0, 0) = φ(t)δx∗,x0 +
∫ t

0
dt ′ P(x∗, t | x∗, t ′)F (x∗, t ′ | x0, 0). (A.5)
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Figure 7. Schematic drawing representing some realizations (in dimensionless distance and time)
contributing to the definition of the FPTD. Note that the realization C3 does not contribute in the
definition (A.4), but it does in the construction of a Markov propagator P(x∗, t | x∗, t ′).

Therefore, assuming that the space and the time are homogeneous we get

P(x∗, t | x0, 0) = φ(t)δx∗,x0 +
∫ t

0
dt ′ P(0, t − t ′ | 0, 0)F (x∗, t ′ | x0, 0). (A.6)

Thus the probability distribution to cross the level L at time t for the first time, having started
the walk from x0 at time t0 = 0, can be solved by a Laplace transform of the convolution
equation (A.6), i.e.,

F̂ (L, u | x0, 0) = P̂ (L, u | x0, 0)

P̂ (0, u | 0, 0)
, with L �= x0. (A.7)

This result is exact for any Markovian process.
The specific assumption generally made in defining the CTRW model is that the intervals

between successive steps of the process, τn = tn − tn−1, are identically distributed independent
random variables characterized by the distributions

ψ(n)(τ ) =
∫ τ

0
ψ(n−1)(t)ψ(τ − t) dt, n = 1, 2, 3, . . . .

Let us emphasize that the single-state CTRW is, in general, a non-Markovian process, since at
any time one has to know both the position of the walker and the time at which the last step was
made in order to predict the further course of the random walk, except for the exponential form
of the fundamental waiting-time density ψ(t) [10]. Here, it is important to remark that, due
to the particular convolution structure of the CTRW propagator, it is possible to conclude that
the FPTD is related to a synchronized conditional probability by an extension of the renewal
equation for an arbitrary waiting-time density ψ(t) [32]:

P(x∗, t | x0, 0) = φ(0)(t)δx∗,x0 +
∫ t

0
dt ′ PS(x∗, t | x∗, t ′)F (x∗, t ′ | x0, 0), (A.8)

where PS(x, t | x ′, t ′) is now the synchronized conditional probability and φ(0)(t) is the
sojourn probability for the first jump [8]. Under the synchronized condition there are two
possible choices for the special waiting-time density ψ(0)(t). First, we may consider the
transition at t = 0 as the first one [33]. Second, we may consider Feller’s stationary ensemble
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case ψ(0)(t) = ψ(t) [8, 34]. Then as a result of the synchronized condition, in both cases
the FPTD is given by (A.7). Taking x0 = 0 the solution (A.7) is the result we used in (8).
In the multistate CTRW case the present discussion is slightly more complex because the
synchronization condition must also be extended to the configuration of the internal states, but
the main idea is the same (see appendix B of [17] and references therein).

To end this discussion, let us mention that (A.7) is just the formula used in the
work of Scher and Montroll [19]. Also a related exact formula was presented in a
pioneering work by Montroll when he studied a Markovian chain [35]. There, the quantity
F(l1 − l0, z) = G(l1 − l0, z)/G(0, z) was the generating function of all walks which start at
l0 and reach l1 for the first time at the nth step (n = 1, 2, . . . ,∞), while G(l1 − l0, z) was the
generating function which corresponds to the sum over all paths which start at l0 and end at
l1. It is interesting to point out that a rigorous perturbation approach, in terms of Terwiel’s
cumulants, was presented in [14] to calculate the FPTD in random media (without bias). In the
presence of disorder and a small bias the mentioned perturbation theory can also be considered
as was presented in [36].

Appendix B. On the Abel probability distributions

Abel was probably the first to give an application of fractional calculus [37]. He used
derivatives of arbitrary order to solve the isochrone problem in classical mechanics, and the
integral equation he worked out was precisely the one Riemann used to define fractional
derivatives [21]. It is interesting to note that the particular class of normalized one-side stable
(Lévy) type of probabilities [38]

ψ(t) = τ θ

�(θ)
t−1−θ exp(−τ/t), with τ > 0, t > 0, θ > 0, (B.1)

are solutions to a class of fractional differential equations of the Abel type [39]. In particular
it is simple to see that the integer q-moments of the random variable t are finite if θ > q. From
now on let us refer to an Abel distribution in honour of the great mathematician. The Laplace
transform of the probability density (B.1) can be calculated straightforwardly and reads:

ψ̂(u) = 2

�(θ)
(
√

uτ)θKθ(2
√

uτ), (B.2)

where Kθ(z) is the Basset function [21]. Therefore using,

Kθ(x) 	 �(θ)x−θ

21−θ
+

�(−θ)xθ

21+θ
, 0 < θ < 1, x ∼ 0,

it follows that the asymptotic behaviour of ψ̂(u ∼ 0) is given by

ψ̂(u ∼ 0) 	 1 − π csc(πθ)

θ�(θ)2
(τu)θ + · · · , with θ ∈ (0, 1),

which is of the form (14). The interesting point is to mention that (B.2) allows us to study,
for all u, waiting-time models of strong disorder, and in addition we can ‘reduce’ the disorder
strength by increasing θ , i.e., depending on the value of θ we can obtain non-divergent integer
moments of the random waiting times

〈tq〉 =
∫ ∞

0
tqψ(t) dt = τ q �(θ − q)

�(θ)
, if θ > q. (B.3)

Using Abel’s model of waiting-time density ψ(t), the memory kernel in the Laplace
representation adopts the expression (see equation (7))

Λ̂(u) = u(
√

τu)θKθ(2
√

τu)
�(θ)

2 − (
√

τu)θKθ(2
√

τu)
, with θ > 0. (B.4)
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Figure 8. Typical temporal behaviour (in dimensionless time) of the memory kernel 	(t) using
the Abel probability distribution (B.1) to characterize the strong disorder for different θ and τ = 1.
The memory kernel is not always positive and shows a maximum; note that in the case 1 < θ < 2
the kernel shows a sharper peak leading to a well-defined first moment. The plot also shows the
corresponding waiting-time probability densities ψ(t).

From the properties of the Laplace transform it is possible to check that for this model of
strong disorder the area of the memory kernel is null, i.e., Λ̂(u = 0) = 0. Also the short- and
long-time limits are simple to obtain:

Λ(t = 0) = lim
u→∞ uΛ̂(u) → 0+,

and

Λ(t = ∞) = lim
u→0+

uΛ̂(u) → 0+.

After taking the Laplace inverse of (B.4), in figure 8 we have shown some typical cases
for the memory kernel Λ(t), for θ = 1/2 (all integer moments diverge) and θ = 3/2 (only
the first moment is finite). In addition we have also plotted the corresponding Abel densities
ψ(t).
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[36] Pury P A and Cáceres M O 2002 Phys. Rev. E 66 021112
[37] Abel N H 1823 Solution de quelques problems à l’aide d’integrales définies Werke 1 10
[38] Eliazar I and Klafter J 2004 Physica A 336 219
[39] Budini A A and Caceres M O 2004 J. Phys. A: Math. Gen. 37 5959


